Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.03.23294989

ABSTRACT

Background. The overlapping clinical presentations of patients with acute respiratory disease can complicate disease diagnosis. Whilst PCR diagnostic methods to identify SARS-CoV-2 are highly sensitive, they have their shortcomings including false-positive risk and slow turnaround times. Changes in host gene expression can be used to distinguish between disease groups of interest, providing a viable alternative to infectious disease diagnosis. Methods. We interrogated the whole blood gene expression profiles of patients with COVID-19 (n=87), bacterial infections (n=88), viral infections (n=36), and not-infected controls (n=27) to identify a sparse diagnostic signature for distinguishing COVID-19 from other clinically similar infectious and non-infectious conditions. The sparse diagnostic signature underwent validation in a new cohort using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and then underwent further external validation in an independent in silico RNA-seq cohort. Findings. We identified a 10-gene signature (OASL, UBP1, IL1RN, ZNF684, ENTPD7, NFKBIE, CDKN1C, CD44, OTOF, MSR1) that distinguished COVID-19 from other infectious and non-infectious diseases with an AUC of 87.1% (95% CI: 82.6%-91.7%) in the discovery cohort and 88.7% and 93.6% when evaluated in the RT-qPCR validation, and in silico cohorts respectively. Interpretation. Using well-phenotyped samples collected from patients admitted acutely with a spectrum of infectious and non-infectious syndromes, we provide a detailed catalogue of blood gene expression at the time of hospital admission. The findings result in the identification of a 10-gene host diagnostic signature to accurately distinguish COVID-19 from other infection syndromes presenting to hospital. This could be developed into a rapid point-of-care diagnostic test, providing a valuable syndromic diagnostic tool for future early pandemic use.


Subject(s)
Communicable Diseases, Emerging , Infections , Severe Acute Respiratory Syndrome , Bacterial Infections , Communicable Diseases , Virus Diseases , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.23.21260740

ABSTRACT

There is a critical need for improved infectious disease diagnostics to enable rapid case identification in a viral pandemic and support targeted antimicrobial prescribing. Here we use high-resolution liquid chromatography coupled with mass spectrometry to compare the admission serum metabolome of patients attending hospital with a range of viral infections, including SARS-CoV-2, to those with bacterial infections, non-infected inflammatory conditions and healthy controls. We demonstrate for the first time that 3'-Deoxy-3',4'-didehydro-cytidine (ddhC), a free base of the only known human antiviral small molecule ddhC-triphosphate (ddhCTP), is detectable in serum. ddhC acts as an accurate biomarker for viral infections, generating an area under the receiver operating characteristic curve of 0.954 (95% confidence interval 0.923-0.986) when comparing viral to non-viral cases. Gene expression of viperin, the enzyme responsible for ddhCTP synthesis, is highly correlated with ddhC, providing a biological mechanism for its increase during viral infection. These findings underline a key future diagnostic role of ddhC in the context of pandemic preparedness and antimicrobial stewardship.


Subject(s)
Bacterial Infections , Communicable Diseases , Virus Diseases , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20174193

ABSTRACT

Background Access to rapid diagnosis is key to the control and management of SARS-CoV-2. Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) testing usually requires a centralised laboratory and significant infrastructure. We describe the development and diagnostic accuracy assessment of a novel, rapid point-of-care RT-PCR test, the DnaNudge platform CovidNudge test, which requires no laboratory handling or sample pre-processing. Methods Nasopharyngeal swabs are inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as a positive control. Between April and May 2020, swab samples were tested in parallel using the CovidNudge direct-to-cartridge platform and standard laboratory RT-PCR using swabs in viral transport medium. Samples were collected from three groups: self-referred healthcare workers with suspected COVID-19 (Group 1, n=280/386; 73%); patients attending the emergency department with suspected COVID-19 (Group 2, n=15/386; 4%) and hospital inpatient admissions with or without suspected COVID-19 (Group 3, n=91/386; 23%). Results Of 386 paired samples tested across all groups, 67 tested positive on the CovidNudge platform and 71 with standard laboratory RT-PCR. The sensitivity of the test varied by group (Group 1 93% [84-98%], Group 2 100% [48-100%] and Group 3 100% [29-100%], giving an average sensitivity of 94.4% (95% confidence interval 86-98%) and an overall specificity of 100% (95%CI 99-100%; Group 1 100% [98-100%]; Group 2 100% [69-100%] and Group 3 100% [96-100%]). Point of care testing performance was comparable during a period of high (25%) and low (3%) background prevalence. Amplification of the viral nucleocapsid (n1, n2, n3) targets were most sensitive for detection of SARS-CoV2, with the assay able to detect 1x104 viral particles in a single swab. Conclusions The CovidNudge platform offers a sensitive, specific and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The implementation of such a device could be used to enable rapid decisions for clinical care and testing programs.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL